Forest Garden


Introduction
Mulching
Watering
Misting
Pruning
Plant Pests
Drought Stress
Compost
Fodder Plants
Soil Nutrients
Cold Protection
Leaf Senescence
Better Guilds
Seed Pies
Pepper Species
Bare Root Trees
Mango Embryo: Mono vs Poly
Heirloom and Compost
Climbing Trees
Sawing Trees
Banana Timing
Plant Feeding Cycle
Species Leafing Cycle
Chain Saws
Hedge
Moderation in Cultivation
Observation/Response Method
Sunny After The Rains
Chop & Drop
Mutualistic Relationships
Rooting Cuttings


Introduction

Forest Garden documents what we are growing at our homestead in central Florida, central zone 9.  There are a few freezing nights here each year but almost always separated by a number of warmer days.  The dry season is from October to May, averaging 25 inches of rain.  The wet season from June to September gets another 25 inches of rain.  The sun is very intense, and it's very humid most nights, even in the dry season.

We are planting on about one acre and we have six to eight very large oak trees here casting a lot of shade.  About half of the ground gets between 4 and 6 hours of direct sun in the winter and between 6 and 8 hours in the summer.   The rest gets between 0 and 3 hours of direct sun in the winter and 2 to 5 hours in the summer.  There is a very gentle slope here so little air pooling.  Wind comes from all directions.  North wind is cold and south wind is warm.

More detailed climate features include high variability of weather within each week as winds shift often, usually between warm southeast and cool northwest. Some winters see a string of weeks with half clear/cold days, and half warm/wet days, causing excess ground moisture due to slow drying. Other winters are relatively clear, causing excess ground cooling. The summer wet season length varies considerably. The benefits and liabilities of each variation are much different, creating considerable needs for frequent adjustments to maintain ideal microclimates for the plants.

The soil here is yellow sand with topsoil between 6" & 12" depending on density of trees, and consistently well-drained. This soil dries out very fast after rains, and is notoriously infested with root-knot nematodes, which are reduced in winter, with moisture, and with organic matter in soil.

Mulching

Central Florida gardens experience heat stress from a combination of sun, wind, quick-drying soil, and humid nights that retain excess heat. Along with maintaining soil fertility, we add mulch to mitigate this heat stress. We warm the soil in winter by removing mulch and cool soil in summer by adding mulch. We add mulch as the air temperature warms up in spring. Consistent soil moisture maximizes biosphere metabolism, in general, which is key to maximizing garden abundance, but we allow mulch & soil to dry periodically as part of natural cycles to avert pathogens and, along with deep watering, to encourage deep rooting.

Watering

Though variable, our climate tends toward a 9 month dry season and a 3 month wet season in June/July/August. In the dry season we rely on mulch to retain soil moisture, allowing the top few inches of soil to dry for a week before replentishing and allowing the deeper soil to dry for a month before replentishing, in the warmer months. In the colder months these wait periods may double and triple respectively.

We plan to build a rainwater catchment system for watering during the dry periods, given that our sandy soil dries fast. We find that a sunny sky and dry soil is a combination that does not grow trees particularly well, and likewise a cloudy sky and moist soil. Instead, we find that a sunny sky and moist soil is a combination that grows trees particularly well, facilitated by rainwater catchment.

Misting

Risk of heat stress prevails in Central Florida gardens due to sun, wind, quick-drying sandy soil, and humid nights that raise soil temperature. In such a climate the most beneficial garden practice beyond mulching & watering is very likely to be misting when hot & sunny, just enough to keep plant temperature below 90F. This enables growth under full sun when plants would otherwise miss the opportunity due to high leaf temperatures, heat stress, and soil moisture loss. We found misting highly beneficial for persimmons, loquats, blueberries and avocados where flushes of new leaf growth would have been severely burned back by the heat of the sun without misting.

It seems most beneficial to regularly mist the fruit tree canopy and mulch, during hot sun, in order to maintain an optimum soil moisture profile, such that deep soil is moist enough for deep root growth, topsoil is moist enough for plant uptake of nutrients, and mulch is moist enough for rapid mulch decomposition. Such a moisture profile also encourages pioneer weeds to grow in the mulch, for chop and drop harvesting, reducing the needed volume of compost/mulch, and providing options in nutrient sourcing. We do not yet know for sure, but we suspect that the combined benefits of misting outweighs the costs considerably, given high moisture climates tend to be higher metabolism and thereby more productive.

Pruning

We prune all branches at their collar (origin) so that the collar can close in the growth process of the parent branch to prevent decomposition/disease entry. The profile of the parent branch after pruning a child branch appears as if the child branch was never there. In other words, no stub is left, because stubs cannot close to protect the inside from decomposition/disease entry. Heavy duty wire cutters work better than saws/knives to prune small branches in tight places for best control, to prevent injury/damage to nearby bark. With any tool, the bark should be cut through all around the circumference before disconnecting the branch to prevent tearing the bark.

The amount of soil moisture conserved by misting likely rivals the amount of mist water consumed. Conserving soil moisture, especially with compost application, enhances nutrient availability to plant roots. Mist evaporated from plants by dusk averts pathogens. Allowing topsoil to dry periodically also averts pathogens and, along with deep watering, encourages deep rooting.

Plants vulnerable to pathogens thriving in above-ground moisture/humidity need drying periods between mistings. If these plants are also vulnerable dry soil then it becomes important to water the soil without wetting the plants alternately with the misting. Such careful attention is probably crucial for plants that thrive in clay soil to also thrive in sandy soil.

Plant Pests

Different pests attack different plants in different places at different times. Let's review what helped others with similar pest problems in their gardens.

Our spray-on contact pesticide for ants, whiteflies, mealybugs, spidermites and scale is 1 qt water to 1 tsp soap & 1 tsp oil. We use castile liquid soap from soapmakers' supply which lacks additives and we use cold-pressed olive oil. The oil makes the soap stick better and the soap destroys the pests. We think it will also destroy larvae/eggs. We add 1 tsp baking soda to kill fungal spores. Since this also destroys beneficials, we only spray where the pest population has exploded to cause serious damage.

We've found covering young papaya fruit with spanish moss immediately after flowering until growth to a diameter of 3" is effective in preventing papaya fruit fly (papaya wasp) stings.

We're wrapping the stems of tomato, pepper & other transplants with cardboard from ground level up a couple of inches to prevent girldling by unknown pests (problably slugs).

Drought Stress

Not all plant species tell you clearly when they need water. Some species will exhibit no changes for weeks as the deep soil gradually dries out, and then, suddenly, they experience catastrophic damage. These species include citrus, mango, persimmon, fig, grape, pawpaw, sugar apple, and mulberry. Young leaves/stems may wilt but mature ones do not. So we have to check soil moisture directly at the various depths.

Compost

We compost fruit scraps under tarps in the shade, using an anerobic process because we don't have time to aerate the piles and we have the extra space required. Covering the material with leaves, then a tarp, we experienced excessive raids by small mammals, which greatly disturb the composting process, plus the nutrient losses. Mixing the material with dead leaves, we found grubs consuming the nitrogen materials, and leaving the carbon materials, plus susected nutrient losses when grubs turn to flies and fly away. So to deter both mammals and flies, we think we need to cover the piles with several inches of organic sand, and add materials by slicing, spreading, then re-sealing a crevass through the organic sand with a shovel.

Fodder Plants

Fodder plants are wild plants we allow to grow to build soil, to feed our fruit trees, among their many other benefits. Everything from ground cover to large trees. We let fodder plants flower for the pollinator insects and in some cases benefit fruit trees with dappled shade. Those growing close to the fruit trees we trim for airflow and sun as needed, generally for the less established fruit trees and more shaded trees, especially in the wet season. Otherwise, we trim fodder plants as needed for mulch, ideally right before the wet season for quick decomposition and to slow leaching of soil nutrients around the fruit trees.

We pile all parts of all fodder plants around the fruit trees in wide mulch rings, except the largest tree trunks. Those decompose on the ground within two years with the aid of our rainy seasons, weeds, and insects. Medium-size branches we pile in shady spots to speed decompostion, then we add them to the mulch rings when they are soft to step on and work around.

In harvesting fodder plants for composting, for many plant species, harvesting everything above-ground kills the plant so the roots compost in-place, building the soil. If the plant is weakened, rather than killed, it can grow pathogen populations, so then cutting out the root crown is best. If the plant is perennial and isn't stealing resources, trimming it keeps it alive as an ongoing source of compost material.

Soil Nutrients

We ask how plants thrive in nature to help us answer how to manage a forest garden. Soil nutrients is a particularly important question. We read that plants need nitrogen, potassium and phosphorus in larger amounts, and other elements in smaller amounts. How are these elements provided by nature to plants? We read that nitrates assimilated by plants are fixed by soil bacteria and fungi from nitrogen in the air. We think that legumes may significantly increase the amount of nitrogen fixed in soil. It appears to us that natural ecosystems have evolved without the high volume nitrogen production of man-made compost heaps, because the nitrogen in live plants typically escapes into the air before soil microbes can reach it. We think potassium, phosphorus, and other elements, are made available to plants by the breakdown of plant materials by soil microbes and other biota.

Composting - Cornell Waste Management Institute
Composting | NC State Extension
Composting and Mulching | UGA Cooperative Extension
MasterComposter.com

Cornell--Master-Composter-Manual.pdf
Virginia-Cooperative--Onfarm-Composting.pdf
NRAES--Composting-To-Reduce-The-Waste-Stream.pdf


Cold Protection

Winter 2017-18 in Central Florida gave us 30 or so nights below 50F, and 3 nights between 26F & 32F. Tropical fruit trees die slow deaths from cold exposure so it wasn't until May or so until we knew the verdict. Out of 7 banana stalks, the largest two died, the next largest survived and fruited, and the smaller ones survived with minor setback. The two that died had the least protection from the big oaks and rain trees but we suspect their exposure due to their size figured in. Two young sapodillas died, having little protection from oaks. Covering with sheets on the freeze nights was not enough, we think, because of the below 50F nights. We didn't measure soil temperature but we suspect removing mulch to sun the soil might have helped. We know the three freeze nights minus the below 50F nights would not have killed them because we've had such freeze nighte before.

Heat in a plant or in the ground is lost at a rate determined by its temperature and the potential for heat loss. The potential for (radiation) heat loss to the night sky (celestial bodies) is increased as leaf, tree, and cloud cover, and humidity are reduced. Thus radiation can dominate when wind is calm. The potential for (convection) heat loss to the air is increased with wind speed and with the absence of barriers such as trees, hedges, mulch, and dew. Thus convection can dominate when there is significant wind. Conventional discussions tend to neglect (radiation) heat loss to the night sky, so outcomes may be surprising. We have witnessed abundant evidence of its contribution in different outcomes as leaf, tree, and cloud covers vary with planting positions and weather conditions.

Tents for cold protection: We acquired a number of king-size flat cotton bed sheets from thrift stores, safety pins and bamboo stakes for tenting our most cold-sensitive trees. A tent sealed with the ground blocks both radiation heat transmission and convection heat transfer from the plant and its soil to the night sky and the ambient air, respectively, and allows heat from deeper soil to rise up and keep the tree and its topsoil a number of degrees warmer than the outside ambient air. Four stakes are set in the ground and the tree leaf tips are kept inside the tent surface with twine. The sheet length is 8 inches plus twice the tent height plus once the tent length, 4 inches at each end is sealed to the ground with logs or stones. The sheet width is 2 inches plus the tent length plus the tent width so that, folded horizontally from the stakes toward the middle of the side, the two ends of the sheet meet in the middle and the two inches of seam are folded and safety pinned to seal the seam, and the side is sealed to the ground with logs or stones. The top flap of the side is then folded down and sealed with safety pins, and the process is repeated for the other side. We pin the seams sufficiently to prevent wind from breaching them. The tent remains on through the day but opened as needed to prevent heat buildup inside.

Leaf Senescence

Don't try to compost dying leaves, e.g. on a banana plant. In general, we think, if you leave the leaves on the plant as they die, the plant recovers nutrients from the dying leaves. Probably the same is true of flowers.

Leaf Senescence

Better Guilds

We have been growing most of our garden vegetables in guilds with the fruit trees. Some of these guilds out-perform others, and there doesn't seem to be any rhyme or reason to it. We seem to notice blacker, richer soil in some of the better guilds but we don't understand the cause of that soil appearing in some places and not others. We find some guilds are productive with less black, rich soil. One season, a single Black Krim tomato plant produced in guild with our Cara Cara orange, more than what ten plants typically produce elsewhere, but subsequent seasons that guild was only average in performance. For our own use, we list here our Tanenashi persimmon, Sugar Cane jujube, Sugar Apple #1, Cherry of the Rio Grande, and Po Pyu Kalay Mango as consistently better-performing guilds.

Seed Pies

Aluminum pie pans seem to work well for starting tomato, pepper seeds, also eggplant and ground cherry. These varieties need transplanting because when field-sown their stems are often severed near the ground by cutworms. We mix 1/3 compost and 2/3 native sandy loam from under the oak trees in our seed pies. This soil compacts with water so we fill the pie pan to the top, water it well, and add more soil after the watering compacts it. After the soil dries sufficiently we plant the seeds. We have to water carefully since these containers don't drain, but the sandy soil dries fast. We have to carefully locate them because the intense sun quickly damages the seedlings. They seem to tolerate breaking apart their rootballs for planting, but there are numerous environmental challenges: Coons who like to dig in any fresh soil. Sun, rain, wind, and temperature/humidity extremes all severely stress the seedlings so we probably best construct wire mesh covers and use spanish moss for shade and clear plastic to keep everything else off.

Pepper Species

In our garden here in central Florida zone 9a/9b, Capsicum chinense pepper plants thrive 3+ years producing hundreds of fruits while Capsicum annuum plants barely produce 2 fruits before dying. We think this is because Capsicum chinense is much better adapted to our climate, particularly the humidity. So we think the following basic data may be a valuable guide in choosing pepper varieties: Capsicum annuum is especially productive in warm and dry climates. Capsicum baccatum is the domesticated pepper of choice of Bolivia, Ecuador, Peru and Chile (highlands). Capsicum chinense is native to Central America, the Yucatan region, and the Caribbean islands. We've experienced a challenge with wildly variable heat among hot pepper fruit, even among fruits on the same plant, with a huge impact on dish prep.

Bare Root Trees

Bare root is a way to ship deciduous trees that minimizes shipping costs because they can be shipped without soil when dormant. After we receive shipment of bare root trees we unpack them immediately, keep their roots moist, and keep them in shade with fresh air and a temperature between 40F and 80F. We plant them in the soil with the highest root immediately below the soil line and no deeper. This is extremely important because we found that in general the highest root is the only reliable indicator of the root crown. If the tree is planted deeper, the stalk/trunk above the root crown can be fatally attacked by fungus. Two of our bare root trees were killed by such fungus as a result of our mis-identifying the root crowns and planting too deep.

Mango Embryo: Mono vs Poly

Indian mango varieties are mostly monoembryonic while Indochinese mango varieties are mostly polyembryonic. In the case of mangos, monoembryonic means the seed contains one embryo that is not a clone of the mother plant, and polyembryonic means the seed may contain multiple embryos, all except one being clones of the mother plant. Not well-documented is the fact that some polyembryonic varietes, in particular the small yellow fruits commonly sold in US groceries, produce mostly monoembryonic seeds. So if one seeks to grow clones of the mother plant, one must cut open the woody seed hull of several or even many grocery fruits to find one that is polyembryonic. Here is an image comparing mono & poly mango embryos. The poly embryo has multiple attached parts.



Heirloom and Compost

Heirloom varieties of garden plants were selected in compost gardens so these are most likely to thrive in compost. We see how positive things tend to be connected.

Climbing Trees

If you have tall, skinny trees that need pruning, and the lowest branch is out of reach, you can make a climber out of rope.

Get 16 feet of natural fiber rope strong enough to support your weight, cut it in half, and make two identical climbers like so: make a 2 inch diameter loop, using a loop knot, at one end, the diameter being large enough so other knots in the rope easily pass through. Next, make a 10 inch diameter double circle loop 3 feet from the 2 inch loop end, using a loop knot. Tie the double circle together using string. This is the foot loop, and is large enough for most size boots to fit through. The double circle is for comfort. The 3 foot length between these loops will go around up to 1 foot diameter trees. Adjust these parameters according to your needs. Next, cut off any remaining rope.

Loop one of the climbers around the base of a tree, and put the foot loop, knot and all, through the 2 inch loop, step into the foot loop and support your weight on it. Now do it again 2 feet up on the tree with the second climber, and your other foot. If the tree is smooth enough, you can raise a climber without removing your foot from it, while standing in the other climber. Don't forget to attach your pruning saw to yourself in some way. Note that natural fiber has the best grip but also the least strength. Take your time, and be safe.

Sawing Trees

We've had great luck with our pruning saw cutting tree trunks/branches. The saw blade is curved with cross-cut teeth. Curved pruning blades allow for less lateral force for the same amount of cutting, and cross-cut teeth are symmetric in shape so that it cuts in both directions of the blade movement. The blade cost us $2 and we attached it to a board 0.5" x 1.25" x 4' by cutting a slot in one end and securing the blade with two bolts/nuts. After a couple of years of great service, the blade began to jam in the wood as the depth of the cut grew more than 0.5" or so, due to the blade losing its set. Blade set is the protrusion of the teeth sideways, in alternation, to cut a slot that is wider then the blade to prevent jamming. To set the blade, we hold it with heavy-duty needle-nose piers, and clench a small pair of vise-grips on each tooth, bending it out about 1/32 inch. Sharpening is done with a small triangle file. After setting/sharpening, it cut easily through a 7 inch camphor tree trunk in 2 minutes of sawing. Sharpness of tooth point is vital because if it rolls over the wood then it doesn't matter how sharp is the rest of the edge.

Our electric chain saw manual mentions the classic cutting strategy of putting a notch on the side where the tree should fall, then a horizonal cut above that on the opposite side. But we've found the effective way is to tie a rope up high on the tree and secure it to another tree base in the direction it should fall, then cut from the opposite side enough so that the tree can be pulled down by the rope, but leaving just enough wood uncut to keep the tree from falling the wrong way. Our electric chain saw manual doesn't mention it, but we've found the bar/chain are stabilized when we rest the front of the saw body against the tree while cutting.

Banana Timing

Most of our banana plants are Dwarf Cavendish, leaf tips reaching 10 ft, in our climate. We allow one plant to fruit at a time per root mat, removing pups accordingly. Our main challenge is choosing which pup to be the next adult in the root mat, given the challenges of growing this tropical species in our subtropical environment.

One problem is that a plant flowering in late fall is slow to mature its fruit due to the cold killing most of its leaves. A plant that is not flowering in fall can grow more leaves in spring before it flowers, but a plant that has alreadly flowered depends on existing leaves to carry the fruit through maturity. We think pups around 1 to 3 feet to leaf tip at start of spring are candidates for removal (because these are most likely to flower in late fall the next year) so that pups of other sizes may be able to fruit before winter, or during winter with enough leaves. If the adult in a root mat is killed by a freeze, it's the same scenario because this will shift the next pup's schedule up a full year, causing a 1 to 3 foot pup to flower in fall of the current year instead of the next year. Such schedules will of course vary with the usual factors, such as shade, soil, weather, etc.

Another problem is that enduring a cold winter (or other adverse condition such as inadequate nutrients) will stunt rather than slow growth resulting in a smaller yield of fruit on the same schedule. We think smaller/younger plants are not affected by cold as much as larger/older plants. We think pups emerging in spring would enter next winter at 3 to 6 feet high and be adversely affected so it's best to remove these and keep only pups emerging in fall so that they will enter winter below 3 feet. Plants entering winter at full size will produce a full yield after flowering in either winter or spring, so long as they are not killed by winter freeze.

We had problems in the wet season with trunk & stem rot on fruiting stalks, partly due to pups being too large. Even without the rot, the pups are competing when this close in size, so we think the pup to keep is one emerging at about halfway through fruit development, so at fruit harvest the pup will still be small enough not to compete or restrict airflow significantly. We've decided we won't keep pups emerging from previous cut-back pups, even when they're ideal size, because we don't think they are able to regain the lost stalk layers.

Plant Feeding Cycle

Plant a tree and each year's crop is the size of its nutritional input, which is its own dropped leaves/roots from the previous year. Add a companion plant and prune/turn under 1/3 of its foliage each year and a portion of its lost foliage/roots suppliment the size of the tree crop.

Species Leafing Cycle

We have been concerned when plant leaves turn yellow and fall. So knowing a species' leafing cycle, that is the normal lifespan of a plant's leaves, helps us to know if leaf death is due to stress from drought, disease, etc. We're in zone 9a/9b and our deciduous species more or less lose all of their leaves in late fall but many of these are low chill hour varieties which retain leaves in warmer winters. It's a complex climate and with a wide variety of temperate to tropical species, we've found the need to record the leafing behavior of all our plants for reference.

Chain Saws

Our electric chain saw manual mentions the classic cutting strategy of putting a notch on the side where the tree should fall, then a horizonal cut above that on the opposite side. But we've found the effective way is to tie a rope up high on the tree and secure it to another tree base in the direction it should fall, then cut from the opposite side, to a point where enough wood is cut so that the tree can be pulled down by the rope, but just enough wood is left to keep the tree from falling the wrong way. Our electric chain saw manual doesn't mention it, but we've found the bar/chain are stabilized when we rest the front of the saw body against the tree while cutting.

Hedge

We planted a bamboo stalk on our north boundary in Jan 2020 to make a hedge. A large diameter stalk around 2 years old is best we think. We removed all branches except the large ones on one side and planted it horizontally with branches up, in a 3" deep trench. It's a great example of feeding multiple birds with one hand: 1) reduces cold northern winds, 2) reduces noise, gas fumes & garbage tossed from parking lot, 3) increases privacy & natural beauty, 4) increases bamboo for stakes, relieving need for south line bamboo that imposes unwanted shade.

Moderation in Cultivation

We've noticed that a moderate amount of cultivation yields results while avoiding waste of time and energy. This applies to removing/adding shade, chop/dropping ground cover/weeds, removing bugs, mulching, watering, training/pruning branches, and processes in general.

Observation/Response Method

See if the Observation/Response Method is helpful to you:

Observation: Mulch has exposed soil. Response: Add 1 inch of leaves. Observation: Mulch depth is more than 2 inches. Response: Remove leaves down to 1 inch. Observation: Small weeds in mulch. Response: Let weeds grow. Observation: Large weeds in mulch. Response: Chop and drop large weeds. Observation: Soil under mulch is moist. Response: None. Observation: Soil under mulch is dry. Response: Water until soil moist.

Sunny After The Rains

The sandy soil in central Florida dries out fast. During the summer, there can be extended periods of overcast skies and precipitation, and it's tempting to think this strengthens the plants to better handle intense sun/heat when it returns, probably because of our past experience is with clay soils. But we learned that because leaf/root growth during overcast periods is tender and is then quickly exposed to intense sun/heat, the plants are can be severely stressed in just a few hours, so they really need watering/misting in those first few hours of direct sun.

Chop & Drop

In September 2020 we're a few months into chop/drop which, for us, means allowing weeds to freely grow among our fruiting plants and simply chop and drop the weeds as appropriate. This means we chop/drop those weed reaching a size that begin to restrict airflow and sunshine our fruiting plants need, but not for any other reason. This is because we seem to observe our fruiting plants thriving most when our growing space is completely covered with plants. So this means less mulching, and probably less water, is needed but we're still looking into these. The mulching we still do is to scatter prunings often, but sparsley, to avoid smothering any of the weeds, and direct the bulk of prunings into compost piles. We anticipate learning as we go along to chop/drop weeds based also on maximizing their soil-building, so for example, a weed might be chopped half-way through its lifespan so it may grow out again thereby maximizing the biomass it produces.

Mutualistic Relationships

Mycorrhizal fungi is becoming better understood as beneficial to plants with the ability to provide links between plants to facilitate resource-sharing (nutrients, water, etc) between them so that individual plants can tap into a larger reservoir of resources as needed. We logically induce from this phenomenon that there are likely other mutualistic mechanisms in our ecosystems currently unknown. This likely includes mutualistic slinks formed with the aid of bacteria, worms, insects and other animals, as well as those formed directly among plants via roots, in addition to the more observable plant inter-dependencies such as their smoothing out of environmental impacts from sun, wind, rain, etc. So we have hypothesized that if the soil bed of the entire forest garden were kept moist this could maximize the resource pool for each and every plant, providing a net benefit over more limited strategies. As of the year 2020 we have begun expanding our watering rings around trees, leaving all volunteer plants to grow, and minimizing and more evenly-spreading mulch to encourage more volunteer plants. After a year, we think our fruit trees and garden vegetables are responding positivly.

Rooting Cuttings

To root cuttings, we plant them in pots of native soil, in the warmer months, and keep them in shade, frequently watered and misted. Before we plant them we scrape the bark with a knife in the area to be planted under the soil, exposing some of the green cambium layer, to aid rooting. We ensure at least two nodes are under soil and at least two nodes above soil. A cuttings needs the lower end planted in soil, which can be identified by its larger diameter, or by the orientation of the buds at the nodes. Each node usually has a dormant bud, appearing as a knob or at least a dark spot, above a socket where the leaf stem had attached, and these buds need to point upward when the cutting is planted.

Pawpaw Patch



Copyright (c) 2005 - 2020 Robert Drury
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
See "GNU Free Documentation License".